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The stability of the oscillatory Stokes layers is examined using two quasi-static 
linear theories and an integration of the full time-dependent linearized disturb- 
ance equations. The full theory predicts absolute stability within the investi- 
gated range and perhaps for all the Reynolds numbers. A given wavenumber 
disturbance of a Stokes layer is found to be more stable than that of the motion- 
less state (zero Reynolds number). The quasi-static theories predict strong 
inflexional instabilities. The failure of the quasi-static theories is discussed. 

1. Introduction 
The flow induced in a semi-infinite body of fluid by a harmonically oscillating 

plate of infinite extent was analysed by Stokes. He found a solution to the con- 
stant density Navier-Stokes equations which is a time-periodic plane parallel 
flow along the wall. This is called the Stokes layer. 

Apart from being an exact solution of the unsteady Navier-Stokes equations, 
the Stokes layer plays the role of the prototype viscous boundary-layer correction 
in ‘high frequency’ subsonic oscillatory flows. An immediate example is the flow 
in a pipe driven by a pulsatile pressure gradient. This flow can be analysed by 
using a Stokes layer on the wall and matching to an inviscid core. 

If a closed body, say, a sphere, is oscillated along a diameter, the fluid flow can 
be analysed using inviscid theory far away. The slip near the body is corrected 
by a boundary layer (Wang 1965; Riley 1966) which a t  leading order in oscillation 
amplitude is a Stokes layer. This modified Stokes layer possesses a normal as well 
as a tangential velocity component and a t  second order a steady tangential drift 
velocity. A similar situation occurs a t  the bottom of a water channel (Longuet- 
Higgins 1953) over which a travelling wave propagates. 

Dynamic (parametric) stabilization and destabilization of certain flows due to 
superposed modulation has become a popular subject recently, in large part 
prompted by the experiments of Donnelly (1964), who modulated the inner 
cylinder of a concentric cylinder experiment. He found that the modulation at 
small amplitude could stabilize the Couette flow in that the critical Taylor num- 
ber for instability was raised. Grosch & Salwen (1968) considered the stability of 
modulated plane Poiseuille flow using linear theory. They found a stabilization 
at low modulation amplitude but a destabilization at larger amplitude. 
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Past work on the stability of oscillatory flows concerns not only the Stokes 
layer but also the Jinite Stokes layers which have a second (stationary) infinite 
plate parallel to the first. A simple exact solution of the Navier-Stokes equations 
is still available. This solution well approximates the Stokes-layer solution for 
‘large ’ separation distances. 

Conrad & Criminale (1966) first attempted an energy stability theory on one 
example of a finite Stokes layer. Davis (1971) and von Kerczek & Davis (1972) 
clarified the interpretation of energy theory for time-dependent flows; the latter 
computed the energy limit RE for all separation distances. I n  the limiting case of 
the Stokes layer they found that, if R8 = (2Ui/vw)* < RE = 19.0, then disturb- 
ances of arbitrary amplitude decay monotonically and exponentially to zero as time 
approaches infinity. If only two-dimensional disturbances are considered, a 
similar statement holds for R8 < 38.9. Here U, and w are the velocity amplitude 
and angular frequency of the harmonic wall motion; v is the kinematic viscosity 
of the fluid. Davis & von Kerczek (1973) have reformulated energy theory to 
allow the possibility that  during part of the cycle a disturbance grows but still 
there is a, net exponential decay over a cycle. They computed this new energy 
limit for all the finite Stokes layers. For the limiting case of the Stokes layer they 
found that, if R8 < R,,, then absolute exponential stability is guaranteed. Here 
R,, is 24.2 for three-dimensional disturbances and 46-6 if only two-dimensional 
disturbances are allowed. 

The only linear-theory stability analysis for Stokes layers is that of Collins 
(1963). He makes the quasi-static assumption, i.e. the basic flow is assumed to 
vary so slowly compared with the growth of a disturbance that it can be treated 
as a steady basic state using an instantaneous ‘frozen’ profile. He then does 
a two-dimensional analysis by applying an asymptotic formula for steady 
boundary layers due to Lin and concludes that the critical Reynolds number RL 
of linear theory is 21.4. This value is precluded by the two-dimensional results of 
the above energy theories. The correct quasi-static RL for this profile is RL = 563, 
obtained by direct numerical integration. One difficulty in quasi-static theory is 
the choice of which frozen profile to use. Collins actually uses a very stable one, 
not that which is most dangerous. 

The instability of the Stokes layers is alluded to by Rosenblat (1968) (also see 
Ffowcs Williams, Rosenblat & Stuart 1969) in his analysis of inviscid oscillatory 
Couette flow. His conclusion is that a velocity-vorticity phase shift is necessary 
for such an instabilty. 

The only experimental work directly on the Stokes-layer instability is that of 
Li (1954), O’Brien & Logan (1965) and Sergeev (1966). Li examined the layer on 
an oscillating plate and found using visual means that the critical Reynolds 
number for transition to turbulence is 566. O’Brien & Logan examined the same 
situation and were able to attain the Reynolds numbers up to 130. Within this 
range no instability was apparent. Sergeev examined the flow in a circular tube 
generated by oscillating bellows. He used both visual means and measurements 
on the power input to the bellows to assess transition. I n  a series of nearly 100 
experiments, he found a transition Reynolds number of 500 when the flow is well 
approximated by a Stokes layer near the wall matched to an inviscid core. 



Stability of oscillatory Stokes layers 755 

6--------r 

u, cos Ot' 

FIGURE 1 .  The geometry of the finite Stokes layer. 

The modified Stokes layer on the bottom of a water channel over which small 
surface waves travel was examined by Vincent (1957) and Collins (1963) using 
visual techniques. Transition Reynolds numbers of 113 and 160, respectively, 
were found. 

As has been seen, complicated oscillatory flows can be conveniently analysed 
by decomposing the flow into two parts: an inviscid outer flow plus a viscous 
boundary-layer correction. This boundary layer is often of the Stokes type. An 
attractive possibility is that the stability of such complicated flows might be 
examined by treating the stability of each part separately. The object of the 
present work is to assess the stability of the Stokes layer according to linear 
theory. For technical reasons, finite Stokes layers will be examined. Two quasi- 
static theories and the full time-dependent linear problem will be evaluated and 
compared. The results will be interpreted in the light of the experiments and in 
terms of more general flows. 

2. Formulation 
Consider an incompressible Newtonian viscous fluid of constant density p and 

kinematic viscosity Y confined between two infinite parallel plates a distance d 
apart (see figure 1).  Let (x', y', z')  be the Cartesian co-ordinates of a system with 
its origin in one of the plates, with its x' and y' axes parallel to the plates and 
with its 2' axis normal to the plates. The corresponding velocity vector and 
pressure are given by (u', v', w') and p' .  The plate a t  z' = 0 oscillates with the 
velocity Uo cos wt'in the x' direction, where t'is the time, wis the angular frequency 
of oscillation and Uo is the velocity amplitude. The plate a t  z' = d is stationary. 

The problem can be scaled by introducing the following non-dimensional 
variables : 

and 

where 6 = (2u /w) t  is the Stokes length. Two non-dimensional groups emerge: the 
Stokes-Reynolds number R6 = UoS/v and p =  d/S. 

I n  terms of these Stokes scales, a periodic basic solution for the induced fluid 

t = W t l ,  (u, v, w) = U,l(u', v', w'), p = pvU06-1p' 

(x, y, 2) = Wx', y', z ' ) ,  

flow is as follows: 

where 
sinh(l+i)(B-z) . 

( s inh( l+ i )p  
%(z,t) = Re 

(2.1 a) 

(2.1b) 

48-2 
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This can be termed afinite Stokes layer (von Kerczek & Davis 1972) in analogy 
with the Xtokes layer that governs the flow as the stationary plate is removed to 

(2 . lc)  infinity: 
%(z, t )  = e-zcos(z - t )  as P+m. 

Alternatively, the length d rather than 6 can be used for scaling with the 
Reynolds number Rd = U,d/v emerging. On these Reynolds scales, the limiting 
flow for P-. 0 has the form 

%(5,t) = (1-5)cost as P + O ,  (2.1 d )  

where 2 = ZIP, and represents modulated plane Couette flow. 

3. Disturbances 
Let the basic state (2.1) be slightly disturbed as follows: 

v = vo + v’, p = p ,  +p’. 

If  this disturbed flow is substituted into the governing (non-dimensional) 
Navier-Stokes and continuity equations (with the primes dropped), then the 
linearized disturbance equations take the form 

2a(u, V ,  w)/at + RYW&, + *u,, av,, *wX) = - (pz,pu,pa) + w, V, w), ( 3 ~  a)  

u,+v,+w, = 0. ( 3 . l b )  

The appropriate boundary conditions are 

u = v = w = O  on z = O , P .  (3.1 c)  

Here V2 denotes the Laplacian operator and condition (3.1 c)  is understood to be 
taken in the limiting sense P+M) for the Stokes layer. 

Since @ depends on z and t only, the linear system (3.1) can be separated (or 
Fourier analysed) in x and y ,  and each mode considered separately. Let us define 
the modes 

where a and y are real wavenumbers (scaled on 6 ) .  The system (3.1) then becomes 

(u, v, w, p )  = (a, o,&, $1 exp Max + rY)l) 

2a(&, a, $)/at + R8(8@, + ia@a, ia@!6, ia&8) 
= - ( ~ a $ , i y ~ , ~ , ) + 2 ( ~ , ~ , 8 ) ,  (3.2a,b,c) 

(3.2d) i(aQ + yo) + 8, = 0, 

where 

(3 .2e)  

4. Two- and three-dimensional disturbances 
Disturbance waves of general wavenumber (a, y )  are called three-dimensional 

disturbances, whereas those with y = 0 are called two-dimensional. In  the linear 
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stability problem of steady unidirectional shear flows a transformation can be 
made (Squire 1933) which reduces the linear stability problem for all three- 
dimensional disturbances to an equivalent problem for two-dimensional disturb- 
ances. A n  immediate consequence of this transformation is Squire's theorem, 
which states that for every three-dimensional disturbance of wavenumber (a, y )  
there is a related two-dimensional disturbance with wavenumber ((a2 + y2)Q, 0 )  
a t  a lower Reynolds number. This relationship is then used to prove that the 
minimum critical Reynolds number RL above which at  least one disturbance 
exists that renders the basic state unstable corresponds to a two-dimensional 
disturbance. All three-dimensional disturbances at  this and lower Reynolds 
numbers damp out with time. 

Exactly the same Squire's theorem can be proved for the Stokes layers and, in 
fact, any unidirectional unsteady shear flow in which separate time and length 
scales are defined. (Also see Conrad & Criminale 1965.) The transformation that 
leads to Squire's theorem for these unsteady flows emerges most readily by con- 
sidering the flow in terms of variables made dimensionless by the Stokes scales. 

For the Stokes layers, multiply ( 3 . 2 ~ )  by a, (3 .2b )  by y and add to obtain 

2(0&, +yat) + RG(aa%!a +ia2@!$ + ia$Y&!) = - i(a2 + y 2 )  j3 + L??(a!$ + 70). (4.1) 

and use them in (4,1), ( 3 . 2 ~ )  and ( 3 . 2 d )  to obtain 

2Gt + RS(GaS + ia@G) = - i&@ + 9 G ,  

2Gt + i&iiwz = - gz + 9G, 
(4 .3  a) 

(4 .3b )  

i&C + GS = 0, ( 4 . 3 4  

E = G =  0,  on z = O , P .  (4.3 a) 
Note that problem (4 .3)  is the same as problem (3 .2 )  with y = 0, so that the 

three-dimensional problem is reduced to an equivalent two-dimensional one. 
Furthermore, note that there are no changes in z or t and so none in @(z, t ) .  Hence, 
any three-dimensional disturbance is related to a two-dimensional one at lower 
Reynolds number through the relation ( 4 . 2 ) .  Only two-dimensional disturbances 
will be examined henceforth. 

5. The two-dimensional disturbance equation 
Let us introduce the disturbance stream function $ as follows: 

a = a = -ia$ (5.1) 

By use of expressions (5.1), and the assumptions y = 0 3 0,  the system (3 .2)  can 
be reduced by cross-differentiation to the following one: 

2a(9#)lat+iaR8(@9$ - @zz$) = -Ep2$, (5.2a) 

# = $ , = O  on z = O , P .  (5.2 b )  
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If the basic flow were time-independent, then normal modes in time could be 
examined by letting 

Then, ( 5 . 2 ~ )  becomes 
# ( z ,  t )  = $ ( z )  exp { - i&aRSct). (5.3a) 

with $ = # , = O  on z = o , p ,  
when @ is independent of time. This is the classical Orr-Sommerfeld problem. 

6. A symmetry property 
The solutions # ( z ,  t )  of system (5.2) satisfy the relation 

9% t )  = 4*@, t - 4, (6.1) 

where an asterisk denotes the complex conjugate. This can be proved by noting 
from (2.16) that %(z , t )  = -@(z,t-n), so that upon taking the complex con- 
jugate of system ( 5 . 2 )  and letting t = 7+n ,  one obtains 

2a(2'$*)/& + iaR'[@(z, 7) 9#* - @,,(z, 7) #"I = -.Y2#*, 

# * = # ; = O  on z = o , ~ .  

This result is important in the solution of system ( 5 . 2 )  in the following way. 
Since (5.2) is a linear systeni with time-periodic coefficients, one expects on the 
basis of Floquet theory that the solutions can be represented in the form 

#(% t )  = eAt w, t),  

where q9 has the same 2n-period as the coefficients if the eigenvalue h is simple. 
The property (8.1) implies that  A* and h are simultaneous eigenvalues. 

Physically, whenever there exists a disturbance wave $(z ,  t) exp [At + iax] that 
propagates to the right, there is also a wave of the same form propagating to  the 
left. This allows the special case of standing waves, in which h is real. These 
standing waves would be synchronous with the basic state. 

Furthermore, the property (6.1) will allow us later in the numerical analysis 
to infer the solutions for the time interval [0,2n] from those for [0, 773. 

7. The inviscid limit 
In the linear stability theory for steady basic states, the inviscid limit R -+ 00 

of the Orr-Sommerfeld equation (5.36) results in an inviscid problem, one of 
whose solutions is the proper limit of certain solutions of the Orr-Sommerfeld 
equation as R+ 00. Hence, the inviscid problem can provide useful information 
about the instability of the flow. The Rayleigh and Fjarrtoft conditions (see 
Drazin & Howard 1988) necessary for instability are based on the linearized 
inviscid Orr-Sommerfeld equation. The conditions alert one to  certain points of 
inflexion as candidates for local instability. When these instabilities are present 
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they have O( 1) growth rates. It thus seems natural to inquire as to the inviscid 
limit of system (5.2). 

The basic flow % is a solution of the (dimensional) diffusion equation 

(apt{  - v a2/azf2) a = 0. 

Hence, the basic flow is explicitly dependent on the viscosity coefficient v. This is 
in contrast to the steady basic flow normally treated, whose profiles are explicitly 
independent of v. I n  fact, the limit v -> 0 is not well-defined for the Stokes layers 
since in this limit the essential balance between local acceleration and viscous 
forces is destroyed. Only a shear layer a t  z = 0 survives. 

As a result, the limiting form of system (5.2) as v+ 0 is not well defined. Using 
the Stokes scales, PJCO, and with w-1 as the time scale, the reduced equation 
becomes 

with the Stokes-layer profile (2.1 c). Here disturbances are neutral if in fact they 
are correct inviscid limits of viscous solutions a t  all. 

If, instead of w-1, the convective time scale S/U, is used, then the v -+ 0 limit 
of the basic flow is non-uniform in time. 

The conclusion is that the inviscid problem no longer plays the role that it did 
in the stability of steady parallel flows. Furthermore, it sounds a warning against 
inferring instability behaviour on the basis of instantaneous points of inflexion. 

a2q5-azzq5 = 0 

8. Some special limits 

obtained. These solutions will help in the interpretation of the final results. 
Some explicit solutions of problem ( 5 . 2 )  in certain limiting cases can be 

Consider the limiting case of R b O  with P and a fixed. Then (5.2) becomes 

2 a ( 2 $ ) / a t  = ~ ~ q 5 ,  (8 . ia )  

Q = q 5 z =  0 on z = O , P .  (8.1 b )  

Since the time-dependent basic state is absent, let $ = 7 e-At and 5 = (2/p) z - 1. 
System (8.1) then becomes 

L27 +PLY = 0, (8.2) 

where L = d2/dC2 - 62,  6 2  = *p2u2, /L = pp. 
The solutions of problem (8.2) are the Dolph-Lewis eigenfunctions (Dolph & 
Lewis 1958) corresponding to the eigenvalues ,u, = ui+c2, n = 1,2 ,  ..., where 
the < satisfy the transcendental equations 

(8.3) 

(8.4) 

u, cosh sin u,, + < sinh ( cos ZL, = 0 

u, sinh $ cos u, - $ cosh 6 sin u, = 0. or 

The smallest eigenvalue p, is the first zero of (8.3) and is obtained from the series 
(Dolph & Lewis 1958) for small up: 

a a2 a3 
7r n-3 7f5 

u1 = n+---+2-+ ..., 
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where a = - [tanh 5. From this, the decay rate of disturbances can be obtained: 

Consider the limiting case of a-to with R8 and /3 fixed. I n  this limit (5 .2 )  
reduces to 

2a@z,lat = @zz,,, 

# = q 5 a = 0  on z = O , p .  

This is the same problem as (8.2) with a = 0,  so that the decay rates of these 
disturbances are immediately obtained from (8.5) as 

A = 2772p. (8.6) 

9. The Galerkin equation 
Consider the class of functions {cjn(z)} that satisfy @n = & = 0 on z = O,p, 

have continuous fourth derivatives and are complete in an appropriate sense 
(von Kerczek 1973). These functions will be used to represent the solution 
# ( z ,  t )  of system (5.2) through Galerkin's method. 

Assume that we can write 

where convergence is presumed as N--+oo. The N-term truncated form (9.1) is 
not an exact solution of (5.2) but if the error is made orthogonal to each +,, then 
the optimal such approximation is obtained. If this is done, then the following 
system of ordinary differential equations for the amplitude coefficients is 
obtained: h 

where 

h h 

2Q da/dt = Pa - iaRW(t) a, 

Pmn ( t )  = <az+n - eZ,+,, $ n ~ >  = emn cost + s,, sin t ,  

(a,b) E abdz. 

The matrices P and - Q  are symmetric t n d  positive definite. The matrices 
P,  Q, C and S are all constant. The matrix Q can be inverted to yield the system 
equivalent to (9.2):  

2daldt  = Pa - iaRW(t) a. (9 .3a )  

( 9 4  

Gmn = < z + n ,  +m), ' m n  = < g 2 + n ,  $m>, 
A 

A s: 
A 

h A h  h 

It will be convenient to use the shorthand notation 

A ( t )  = &[P-iaRW(t)],  (9 .3b )  

so that the Galerkin equation is then 

daldt = A(t)a.  (9 .3c)  
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10. The quasi-static problems 
A popular assumption made in treating the stability of time-dependent states 

is that of quasi-steadiness. There, it is assumed that the scale of variation of 
a growing or decaying disturbance is much faster than that of the variation of 
the basic state. If this were so, then the rapidly varying disturbance would to 
a good approximation feel the effect of only an instantaneous basic state profile. 
Hence, it would be reasonable to replace the time t in the coefficients of ( 5 . 2 )  by 
a constant to and treat this frozen profile as though it were steady. Since the time 
has been removed from the coefficients, normal modes in time (5 .3a)  could be 
used and (5 .2 )  would reduce to the Orr-Sommerfeld equation (5.3 b) .  Not only 
does this procedure avoid the necessity of solving a partial differential equation 
but it also makes the inviscid limit of the equation well-behaved. In  effect, it 
fixes t/R8 as R8-+ co, where f is a non-dimensional time scaled on the convective 
time 8/Uo. This non-uniformity in the time-dependent problem was mentioned 
in 38. 

The quasi-static Galerkin system corresponding to (9.3) has constant coeffi- 
cients. It is then possible to write 

a( t ;  to) = ii(t,) en(to)t 

and so the Galerkin system can be solved by obtaining the eigenvalues h of an 
N x N matrix, 

(10.1) det (A( to )  - hl )  = 0. 

One difficulty involved is the choice of to, 0 6 to < 27r. In practice, two quasi- 
static stability criteria are often used. 

Quasi-static theory A .  Find that profile (and hence the corresponding to) which 
is most unstable. For that profile, find the smallest positive value of R8 (call it R i )  
that makes the principal eigenvalue A, have zero real part. (All other hi’s have 
negative real part.) 

Quasi-static theory B. Compute, for a fixed R8, h,(to), i.e. find the principal 
eigenvalue A, for each to, 0 6 to < 27r. Then compute 

ul(R8) = j S n  h,(t,) dt,. 
0 

Interpolate on R8 to find the smallest positive R8 (call it  R$) such that 

o,(R;) = 0. 

The analyses of Collins (1963) and Obremski & Morkovin (1969) incorporate 
approximations respectively similar to types A and B.  

11. The time-dependent problem 
The fundamental matrix F(t) of the N-dimensional time-dependent Galerkin 

equation (9.3) can be represented using the Ploquet theorem (Coddington & 
Levinson 1955, p. 78): F(t) = B(t)etc, (11.1) 
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where B is a 2n-periodic matrix in t since the basic state is, C is a constant matrix 
and the initial value of F can be taken, without loss of generality, to be the 
identity matrix: 

Since B(t) = B(t+ 2n), it follows from (11.2) that 

F(0) = 1. (11.2) 

F(2n) = e2nC. (11.3) 

Since F(277) is transformed to triangular form and C to Jordan canonical form 
by the same transformation matrix, say, S, then the eigenvalues h (called Ploquet 
exponents) of C are obtained from the eigenvalues ,u of F(27r) by 

h = (2n)-lInp (modn). (11.4) 

Instability criterion. Let A, be the Floquet exponent with the largest real part. 
If Re A, =/= 0, then the Stokes layer is unstable or stable to infinitesimal disturb- 
ances according as Re A, > 0 or Re A, < 0 respectively. If Re A, = 0,  and if A, has 
multiplicity greater than one, then the Stokes layer is unstable. 

The criterion necessitates the calculation of the fundamental matrix F(t) of 
(9.3). The associated eigenvectors are calculated as follows. Let S be the matrix 
that transforms C to its Jordan canonical form J. Then the fundamental matrix F 
becomes transformed to G(t) :  

G( t )  = F(t) S = B(t) S e(tJ). 

The principal eigenvector a(l) can then be calculated by integrating (9.3) starting 
with the initial condition 

(11.5) 

The energy transfer operative in the system can be examined by computing 

a(1)( 0 )  = e-2nhi g,( %7), 

where g1(2n) is the associated column vector of G(2n). 

the entries in the disturbance energy balance: 

9 = jy lvv12 = a*+a, (1 I .6 b )  

r(t) = IV - uw%%z(z, t )  = - iaa*TV(t) a. ( 1 1.6 c )  

The volume V covers 0 6 z 6 p and one period in x. These are related through 
the equation 

2dKldt = -B+R'I(t). (11 .64  

The production term C(x) averaged over one period in time is given by 

C(2) = - ;n/ozn- ( - uw) dt, ( 1  1.7) 

where the bar denotes an x average over one cycle. 



Stability of oscillatory Stokes layers 763 

The symmetry property 

The symmetry property of 9 6 translates to the Galerkin system and serves as an 
aid in the numerical work. 

The property becomes F(t) = F*(t - n). The fundamental matrix 

F(t) (F(0)  = 1) 

is defined for 0 6 t 6 2n. Using the symmetry property, the values of F on 
[n, Zn] can be inferred from those on [O, n]. Define F,(t) such that 

Then 

Fl(n) = I 

F ( t )  = F,(t)  F(n) 

(T ,< t < 2n). 

( 7 ~  6 t < Zn). 

However, the symmetry property gives 

FAt) = F*W,  7 E [O, 771, 

so Fl(2n) = F*(n) and F(2n) = F*(n) F(n). (11.8) 

Hence, the system (9.3) need be integrated only over 0 6 t < n. 

A nunzerical check 

A useful check on the numerical integration can be obtained from the formula 
N 2Tl 

det F(2n) = pi  = exp [ t r  A(s) ds] . (11.9) 
i=l 0 

Here det denotes determinant and t r  denotes trace (Coddington & Levinson 
1955, p. 82). 

Since, from (1 1.4), pi = etnhi (i = 1,2 ,  . . . , N ) ,  
N 

then (1 1.9) becomes C h i = -  ' j Z n t r  A(s) ds. 
i=, 2n 0 

Froin the form of the matrix A, it is easy to see that 

11.10) 

11.11) 

so that (11.10) and (11.11) combine to yield 

N 

i=l 
C hi = gt rP .  (11.12) 

The eigenvalues are already known to be either real or complex conjugates and 
P is real. This is a strong check since condition (1 1.12) is independent of RS. 

12. Numerical analysis 

functions (f,(<)\O < 5 6 I} scaled to the interval 0 < z 6 /3: 
Step 1. The functions (#,(z)} used in the Galerkin procedure are the 'beam ' 

( ~ ? / d [ ~ - p ; )  f, = 0, f, = df,/d[ = 0 on 5 = 0 , l .  (12.1) 
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The eigenfunctions involve elementary functions (Gallagher & Mercer 1962) 
and the corresponding eigenvalues p, are zeros of the equation 

coshp,cosp,- I = 0 (n = 1,2,  ...), 

and are to a good approximation (this approximation is accurate to better than 
16 significant figures for n > 12) 

p, G +(2n+ l ) n  (n = 1,2,  ...). 

The p, are tabulated in von Kerczek (1973) to 16 significant figures for 
l ~ n Q 1 2 .  A 

The matrices Q, P and V are then evaluated by using certain inherent sym- 
metries so that all the matrix entries reduce to  algebraic evaluations (von 
Kerczek 1973). h 

Step 2. The matrix Q was inverted using the subroutine called MINV from the 
IBM Scientific Subroutine Package. This program uses Gauss-Jordan elimina- 
tion witrh complete pivoting (Isaacson & Keller 1966, p. 50). The matrix pro- 
ducts Q-lk and Q-lv were then evaluated. The matrix A(t) is now in hand. 

Step 3. For the quasi-static problems, the normal modes ( 5 . 3 ~ ~ )  can eliminate 
the time dependence of the disturbances, so that the eigenvalue c = cR + ic, can 
be evaluated as an eigenvalue of the matrix A. The LR algorithm (Wilkinson & 
Reinsch 1971, p. 396) was used for this. 

Xtep 4. For the full time-dependent problem, the fundamental matrix F(t) at 
t = rr was obtained numerically. The governing Galerkin equation has the form 

F = A(t) F, F(0) = 1 .  (12.2) 

A single-step method involving higher derivatives of (12.2) was used. This is a 
special case of the methods considered by Lambert & Mitchell (1962). 

F, EZ F(nAt), A, = A(nAt) (n = 0,1,2,  ...), 
If 

then either of two implicit formulae is used: the fourth-order equation 

F,+l = F, + &h( Fnfl + F,) + &h2( - F,+l + F,) -3-h5F(v)(5) 7 2 0  (12.3 a )  

or the sixth-order one 

F,+l = F, + &h( F,+l + F,) + Ah2( - Fn+l + F,) 

+ A h 3 (  Fn+l + F,) + 1&mh7Fvfi)(E), ( 12.3 b )  

where h = At is a step size and 5 a mean value constant. The truncation errors 
are discussed in von Kerczek (1973). The derivatives of (12.2) can be taken 
directly: F = ( A ~ + A )  F BF, 

F = (A+2AA+AB) F. 

The formulae (12.3) can then be written in the form 

Cnfl Fat1 = D, F,. 

F,+1 = C A  D, F,. Hence, at  each step, 

(12.4) 
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Hence, the whole fundamental solution matrix is found a t  each step. The relative 
merits of such a procedure are discussed in von Kerczek & Davis (1974). 

For the system (12.3a), 

Cn+l = I - +hA,+,+ Ahz Bn+l, 

D, = I + #A, + &h2B,. 
For the system (12.3b), 

D, = I + #,An +&hzB, + &h3(An + 2AnAn + A, Bn). 

Step 5 .  From the numerical determination of F(n), the principal eigenvalue A, 
was determined through (1 1.4) from the ,u closest to unity. The eigenvalues ,u of 
F(2n) were calculated using the LR algorithm. 

Step 6. When the principal eigenfunction was to be determined, the first entry 
was normalized to unity and then the LU algorithm (Gaussian elimination; 
Isaacson & Keller 1966, p. 29) was used to find the remaining components. The 
procedure is valid here because in all cases A, turned out to be a simple eigen- 
value and its associated eigenvector f9277) has a non-zero first component. The 
LU algorithm would indicate a singular matrix if this first component were zero. 
This yields the eigenvector f(l)( 277) associated with A,. 

Step 7. The initial value a(Q(0) of the eigenfunction can be obtained from 

a(l)(O) = e-znhi f(1)(277). 

Given this initial value that generates the principal eigenvector, the system (9.3) 
is integrated using a fifth-order Runge-Kutta-Nystrom algorithm (Lapidus & 
Seinfeld 1971, p. 50) as an independent check. At each step, each term of the 
energy integral equation (1 1.6 d) ,  the total energy (1 1.6 a )  and the production 
integral (11.7) are evaluated. 

An extensive series of checks on the numerical work was made in order to 
verify the proper functioning of the program and estimate the accuracy of the 
results. These checks are described in detail by von Kerczek (1973). We mention 
here only two of them. The first makes use of formula (1 I. 12). For example in the 
case where /? = 8-0, a = 0.5, Rt = 400 and N = 5 , t  tr P = - 7.06236. The sum of 
the Floquet exponents obtained by integrating system (9.3) using algorithms 
(12.3 a, b)  on 200 equal steps in the interval [ O ,  n] on the CDC 6600 computer 
(14 decimal digit mantissa) are - 7.06189 and - 7.06235 respectively. A similar 
integration using the Runge-Kutta-Nystrom method on 200 equal time steps 
and the same machine yielded 

5 

i= 1 
hi = -7.05922. 

The second check involves integrating system (9.3) under the initial condition 
(11.5). This integration should yield a(1)(2n) = a(1)(0)e2nhi at t = 2n. Thus, a 
comparison of a(”(0) and ac1)(2n) gives a good consistency and accuracy test of 
the method. An example of such a calculation is shown in table 1 for the case 
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h 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Real part - 
Initial Final 

1~0000 1.0017 
- 1.0295 - 1.0307 

4.9205-1 4.9200-1 
2.1409-2 2.2024-2 

- 1'4810-1 - 1'4840-1 
6.8617-3 6.7347-3 
3.37042 3.3823-2 
1-0652-2 1.0698-2 

- 9'0330-3 - 9.0530-3 
8.7975-4 8.6906-4 
1.4862-3 1.4887-3 
5.6683-4 5.6674-4 

- 1.6737-3 - 1.6766-3 
- 8.7199-4 - 8.7474-4 
- 6.6531-4 - 6.6611-4 

2.8614-5 2.8701-5 
- 1.5703-5 - 16168-5 

2.129 1-4 2.1332-4 
8.9271-5 8.9639-5 
1.5448-4 1.5463-4 
3.41194 3.4196-5 
5.7499-5 5.7450-5 

- 1.4058-5 - 1.41145 
1.5821-5 1.5735-5 

- 1.7082-5 - 1-7130-5 
1.2178-5 1.21334 

Imaginary part 

Initial 
0.0 
2.8478-1 

- 4.7648-1 
2.0846-1 
6.8253-2 

- 8.4168-2 
1.0112-2 
2.0559-2 
1.3976-3 

- 8.1633-3 
- 3'0445-3 
- 8.421 1-4 

2.5730-4 
- 1.6824-4 

3.2092-4 
2 * 3 2 9 3-4 
3.4740-4 
8.6 1 7 8-5 
5.7387-5 

- 9.1 145-5 
- 6.3620-5 
- 1-1200-4 
- 6.23424 
- 7.4882-5 

3.3403-5 
- 4-0587-5 

Final 
- 1.5193-3 

2.8706-1 
- 4.7837-1 

2.0893-1 
6.8624-2 

- 8.4387-2 
1.0086-2 
2.0600-2 
1.4152-3 

- 8.1857-3 
- 3.0531-3 
- 8.4444-4 

2.6024-4 
- 1.6787-4 

3.2239-4 
2.3332-4 
3.4827-4 
8.6106-5 
5.74614 

- 9.15394 
- 6.3774-5 
- 1.1233-4 
- 6.2450-5 
- 7.5075-5 
- 3.3449-5 
- 4.0697-5 

TABLE 1. The initial values of the eigenvector a(1)( 0) corresponding to A, compared 
with a(') (2n)e-2nhl. p = 8.0, a = 0.5, R6 = 600 and N = 26. 

p = 8.0, a = 0-5, R8 = 600 and N = 26. The Floquet exponent A, and corre- 
sponding initial vector a(')(O) were obtained using algorithm (12.3b).  The time 
integration starting with the initial condition a(1)( 0) was carried out using the 
Runge-Kutta-Nystrom algorithm. For larger values of RS as many as 34 
Galerkin terms ( N  = 34) were used. 

13. Results and conclusions 
The single most important Stokes layer corresponds to ,8 = co since it is this 

one that plays the role of a viscous boundary-layer correction in oscillatory flows. 
However, Galerkin's method only seems justified for ,8 < 00, so that a compromise 
must be made between good approximation of the Stokes layer on one hand and 
the convergence of Galerkin's method on the other. The value p = 8 was chosen. 
This is consistent with the energy-theory results of von Kerczek & Davis (1972), 
who found that the critical Reynolds numbers of that theory for /? = 8 and 
/? = co were within 1 % of each other. However, it must be kept in mind that no 
finite value of ,8 approximates the case p = 00 for all values of a since as a: -+ 0, the 
p < co problems have non-trivial solutions of the disturbance equation with 
finite values of aBS (see (8.6)) while for /I = co, aRS -+ co as a -+ 0. Clearly, long 
enough disturbance waves feel the influence of a second wall finitely placed. 
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FIGURE 2.  The energy limit RLE and quasi-static neutral curves for the finite Stokes layer; 
,8 = 8.0. The dotted rectangle encloses the region of detailed calculations of absolute 
stability for the full time-dependent problem. When cc = 0, there is also absolute stability. 

Figure 2 is used t o  enter the neutral-curve information obtained. The lowest 
curve in figure 2 corresponds to R8 = R$,(2D), the mean energy limit of Davis 
& von Kerczek (1973). Below this curve two-dimensional disturbances of arbi- 
trary amplitude decay to zero exponentially when averaged over a cycle of the 
basic state. The minimum value of R8 on this curve is 47.1. It is only above this 
curve in the a, RS plane that instabilities may exist. 

In  comparison with the full time-dependent linear theory, the relative ease of 
calculation under a quasi-static assumption is enormous. This is one of the reasons 
for its popularity. Two such theories were applied to the Stokes layer for p = 8. 
Quasi-static theory A seeks to make the most dangerous frozen profile (near 
to = in) neutral. This neutral curve was computed and IabeIIed R2 in figure 2. 
The minimum of this curve occurs near a = 0-5 and is min R$ = 86.0. Quasi- 

static theory B allows growth at some instants to but seeks a zero value of the 
growth rates averaged over a cycle of the Stokes layer. This neutral curve was 
computed and labelled R$ in figure 2. The minimum of this curve occurs near 
a: = 0.5 and is min R$ = 182. 

a 

a 

The quasi-static assumption accomplishes two simplifications. It allows the 
reduction of the governing disturbance equation (5.2) from a partial differential 
equation to an ordinary differential equation (5.3), the Orr-Sommerfeld equa- 
tion. Simultaneously, it makes the inviscid limit well-behaved, so that inflexional 
instabilities of the frozen profiles are expected. Hence, the low critical values of 
RS under tlhe theories are natural. 
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disturbance mode for u = 0.5, p = 8.0 and R8 = 600. 

C .  von Kerczek and S. H .  Davis 



Stability of oscillatory Stokes layers 769 

a 
\a , r A 

R8\ 

0 
50.0 

100.0 
160.0 
185-0 
225.0 
300.0 
350.0 
400.0 
425.0 
450.0 
500.0 
585.0 
600.0 
700.0 
800.0 

0.3 

- 
- 
- 
- 
- 
- 

- 0.915 

- 1.02 
- 

- 
- 

- 1.10 

- 1.17 
- 1.25 
- 1.34 

- 

0.5 

- 0.327 
- 0.551 
- 0.682 
- 0.799 
- 0.841 
- 0.900 
- 1.01 

- 1.12 
- 1.14 

- 1.21 
- 1.29 
- 1.30 
- 1.39 
- 1.46 

- 

- 

TABLE 2. The principal Floquet exponent A, (,8 = 8 )  for various a and RS. 

The full time-dependent problem (9.3) was then integrated for ,8 = 8. The 
principal Floquet exponent A, turns out to be real in each case. These values of 
A, are given in table 2 and'plotted us. R8 in figure 3 for various a. The range 
0.3 < a < 1.3, 0 < R8 < 800 was investigated and is indicated in figure 2 by the 
rectangle. The Floquet exponents for a < 0.3 were not calculated because the 
finite Stokes layer with /3 = 8.0 does not adequately simulate the Stokes layer 
(,8 = 00) in this range of a. A rough estimate of the lower limit on a for which 
,8 = 8 adequately simulates ,8 = co was made with the quasi-static theory A .  At 
a = 0.2 the difference between the quasi-static critical R8 a t  ,8 = 8 and ,8 = co is 
about 10 yo (von Kerczek 1973). However, the Floquet exponent a t  a = 0 is 
obtained exactly, equation (8.6), and is shown as the dotted line in figure 3. These 
modes are, likewise, strongly stable, so that stability in the range 0 < a < 0-3 is 
expected, as well. For certain cases the principal eigenfunction was then examined 
by obtaining its appropriate initial value. The initial ( t  = 0 )  kinetic energy distri- 
bution 

K,(z) = - ( u ~ + u ~ ) ~ , O ~ X  
2n a so'"'" 

is plotted in figure 4. Note that the region z < 2 occupied by the boundary layer 
is relatively inactive. The principal eigenfunction is then calculated (see table 1 
for a typical one) and the energy balance ( 11.6 d )  examined. Each term was calcu- 
lated and inserted in this balance as a consistency check. This equation yielded 
an identity to eight significant figures for each case tested. The disturbance 
kinetic energy K is plotted us. t in figure 5 for a = 0.5 and R8 = 100,185,400 and 
600. Notice the more rapid decay for increasing R8. Table 1 gives the initial 
vector a@)(0) for the case p = 8.0, a = 0.5, R8 = 600 and N = 26. Finally, the 
production term given by (1 1.7) was calculated for a = 0-5 and R8 = 185 and 600. 
These are shown in figure 6. 

49 P L M  62 
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FIGURE 5 .  The total kinetic energy K of the principal disturbance mode vs. t for 
p = 8.0 and u = 0.5. 

Within the rectangle of figure 2, 0.3 6 u < 1.3, 0 6 R8 6 800, the full time- 
dependent linear theory predicts absolute stability with A, a monotone decreasing 
function of R8 for fixed u and for p = 8. That is, as the Reynolds number i s  increased 
the most dangerous (mode of a given wavenumber becomes more stable. Larger 
Reynolds numbers allow a greater transfer of disturbance energy to the mean 
flow. This is illustrated in figure 5, where the disturbance kinetic energy K is 
shown as a function of time for various R8. K decreases more rapidly for larger 
R8. The small positive region of the production term reflects the positive region 
in the principal eigenfunction a t  t = 0 which survives the time integration owing 
to the rapid decay of the solutions. Thus, the finite Stokes layer for p = 8 seems 
more stable than the motionless state (also see figure 4). 

The last group of calculations made was for /3 = 12, 16 and 20 for u = 0.5. The 
eigenvalue A, is given in table 3 and is shown in figure 7 along with its companion 
at  R8 = 0. As ,8 increases, A, approaches the RS = 0 curve but always remains 
below it. This gives further validity to the notion that a disturbance of a given 
wavenumber of the Stokes layer is more stable than that of the motionless state. 
As p-foo, the basic state approaches a shear-layer discontinuity at z = 0. A 
disturbance of the basic state is most dangerous in the motionless fluid and as p 
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FIGURE 6. The time-averaged production term C ws. z for 

,8 = 8.0 and a = 0.5. 

increases, the motionless fluid occupies more and more of the region. Hence, the 
presence of the walls constrains the disturbance less and less. The limiting case 
is R6 = 0, where the walls are effectively farthest apart. This suggests that, 
although no calculations were done for RS > 800, the Stokes layer may, in fact, 
be stable for all R8 within the realm of linear theory. 

However, finite amplitude (subcritical) instabilities are certainly possible and 
are suggested by the experiments of Li (1954) and Sergeev (1966), who obtained 
experimental critical values of R8 for transition to turbulence of 566 and 500, 
3 < ,8 < 30, respectively. Of the two sets Sergeev's experiments are much more 
extensive. In  his nearly 100 runs he measured the critical Reynolds numbers 
both by observing marker particles and by measuring the average power per 
cycle needed to  drive the bellows. 

These values seem consistent with the results of this paper in that they show 
that the Stokes layer is remarkably stable. A Reynolds number R8 = 500 is an 
enormous value for an experiment where the induced motion is generated by a 
wall oscillating in its own plane. If the displacement of the wall is given by 
X,sinot, then U, = wX, and R8 is given by 

RS = U,&/V = 2X,/S. (13.1) 

A Reynolds number of 500 implies a wall displacement amplitude of 250 times 6. 
This would be extremely large if one wanted to make 6 large enough to  take 
careful measurements within the boundary layer. 

49-2 
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-0.4 

4 -0.8 

-1.2 

-1 .6 

P R8 A, 
12 600 - 0.374 
16 300 -0.196 
16 600 - 0.208 
20 600 - 0.163 

TABLE 3. The principal Floquet exponent A, for various P and RS and a = 0.5. 

- 

- 

- 

- 

- 

P 
4 8 12 16 20 24 
I 1 I I I I 

FIGURE 7. The principal Floquet exponents A, 21s. P for a = 0.5. 

The significantly lower critical Reynolds numbers found by Vincent ( 1957) 
and Collins (1963) indicate that the stability of modified Stokes layers on the 
bottom of water channels with travelling surface waves is strongly influenced by 
the normal component of velocity and/or the steady drift in the basic state. 

Why do the time-dependent results differ so much from the quasi-static 
theories ? The Stokes layer is a flow with a zero mean. Hence, the only reasonable 
time scale is w-l.  A flow with a non-zero mean has a convective time scale avail- 
able as well. Since was used for the time scale in the present analysis, the 
Floquet exponents computed are non-dimensional measures of the decay (or 
growth) rate of a disturbance measured against the scale of variation of the basic 
state. The numerical results show that A, = O( 1) .  The quasi-static assumption, 
however, assumes that disturbances vary much faster than w-1, so that it could 
only be valid if (A,( 1.  Hence, the results show that there is only a single time 
scale in the Stokes-layer stability problem and quasi-steadiness is not a good 
approximation. The same reasoning could be posed in more familiar terms. 
A steady basic state with a point of inflexion is expected to have O( 1) growth 
rates for Reynolds number R = 00. As R is lowered from infinity, the associated 
growth rate could still be O( 1). If the basic state were ‘slowly varying ’ in time, 
one would again expect a sizeable growth rate. However, the Stokes layer has 
an O( 1) basic time variation. Hence, inflexion points propagate away before 
instabilities can grow locally. The above results and reasoning should hold true 
for general time-dependent stability problems as well. The quasi-static approach 
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must be justified by scale analysis as has been done by Shen (1961), and it seems 
clear that the worst place to apply it is a t  the neutral curve, where disturbances 
neither grow nor decay. 

Rosenblat ( 1968) discusses a new mechanism of inviscid instability whose 
necessary condition is a velocity-vorticity phase shift. This criterion cannot be 
evaluated here for two reasons. First, the Stokes layers have no well-defined 
inviscid limit. Second, Rosenblat’s condition is necessary for instability, and 
no instability at  all is found here for Stokes layers. 
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